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As seen in Tutorial 2, solutions of parameterized equations form continua, which
are called branches. The decisive solutions where something “happens” are bifurca-
tions. At these points, the stability may be lost, or the structure of the state may
change drastically. Bifurcations have a qualitative flavor whereas the branches repre-
sent quantitative elements. A particular example may have a few bifurcation points,
but it has an infinite number of solutions, at least one for each parameter value. Ac-
cordingly, the bulk of computations is the computation of the branches. The effort
devoted to bifurcations is a relatively small fraction of the total expenses. Branches
and bifurcations must be computed both. The resulting bifurcation diagram is the sig-

nature of the problem. This Tutorial 3 is devoted to the computation of the branches.
The calculation of bifurcations is discussed in Tutorial 4. We shall concentrate on
basic principles.
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Fig. 1. Left: a theoretical bifurcation diagram;

right: a result of a numerical path following.

1. Predictor-corrector approach

The procedure will be studied on the formally simple problem

f(y, λ) = 0. (1)

Only a finite selection of the infinitely many (solution,parameter)-combinations (y, λ)
can be calculated—that is, we do not obtain the curves in the branching diagrams
but approximate discrete points on the curve. The process of tracing a branch by
calculating representative solutions (yj , λj) on that branch for j = 0, 1, 2, . . . with
certain distances apart is called continuation, or path following (Figure 1). The calcu-
lated chain of points, in turn, may be interpolated by some smooth curve, which then
approximates the branch. We now discuss a single step of a continuation method,
namely the transition from a calculated solution (yj, λj) to the next solution with
number j + 1,

(yj , λj) → (yj+1, λj+1).

This detail is illustrated by Figure 2, which summaries the predictor-corrector ap-
proach. With predictor–corrector methods, the step j → j + 1 is split into two steps:

(yj , λj)
predictor
−−−−−−−→(ȳj+1, λ̄j+1)

corrector−−−−−−−→(yj+1, λj+1).
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In general, the predictor (ȳ, λ̄) is not a solution of Eq.(1). The predictor merely
provides an initial guess for corrector iterations that home in on a solution of Eq.(1).
In Figure 2 the corrector iteration is indicated by dots. The major portion of the
work is either on the predictor step (resulting in an approximation (ȳ, λ̄) close to
the branch) or on the corrector step (if a “cheaper” predictor has produced a guess
far from the branch). The distance between two consecutively calculated solutions
(yj , λj) and (yj+1, λj+1) is called the step length or step size. This distance can be
measured approximately, for example, by the length of the predictor step. In addition
to Eq.(1), we need a parameterization strategy that identifies the location of a solution
on the branch. In summary, the basic ingredients of predictor-corrector methods are:

(α) predictor,

(β) parameterization strategy,

(γ) corrector, and

(δ) step-length control.

The first three of these four items can be chosen independently of each other. But
the step-length control must match the predictor, the corrector, and the underlying
parameterization. All of the four ingredients have a local nature — that is, they
should be valid for the step j → j + 1 and may be changed for the next step.
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Fig. 2. Predictor–corrector principle.

2. Predictors

Here we outline how the branch is locally approximated by a straight line. Taking
the differential of both sides of Eq.(1), one obtains

0 = df = fydy + fλdλ. (2)

With the notation zi = ith component of z, and setting

zi = dyi (1 ≤ i ≤ n), zn+1 = dλ,
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Eq.(2) is written
(fy|fλ)z = 0 . (3)

Hence z ∈ IRn+1 is tangent to the branch. Equation (3) guarantees a unique straight
line tangent to the branch in (y, λ) as long as the full-rank condition

rank(fy|fλ) = n (4)

is satisfied. The length and the orientation of a vector z on this tangent are still
undetermined. A normalization of z must be imposed to give Eq.(3) a unique solution.
One can use as a normalizing equation ctrz = 1 with, for example, c := ek. This leads
to etr

k z = zk = 1, where ek is the (n + 1)-dimensional unit vector with all elements
equal to zero except the kth, which equals unity (tr denotes transpose). Then the
tangent z is the solution of the linear system

(

fy|fλ
etr

k

)

z = en+1. (5)

Provided the full-rank condition (4) holds along the whole branch, Eq.(5) has a unique
solution at any point on the branch (k may have to be changed). In particular, the
tangent can be calculated at turning points.

Several continuation methods are based on tangent predictors. In these methods
the predictor point (initial approximation) for (yj+1, λj+1) is

(ȳj+1, λ̄j+1) := (yj , λj) + σjz

(see Figure 2). Here σj is an appropriate step length. This tangent predictor can be
considered a step of the Euler method for solving a differential equation that describes
the branch. Hence, the tangent predictor is of first order.

An alternative to the tangent is the secant

(ȳj+1, λ̄j+1) := (yj , λj) + σj(y
j − yj−1, λj − λj−1)

(see Figure 3). The discretization error of the secant predictor is of the same order
as the tangent predictor. Initially, no “old” solution with index j − 1 may be known.
Then the secant is not defined, and one starts with the trivial predictor

(ȳj+1, λ̄j+1) := (yj , λj) ,

which is the previous solution.
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Fig. 3. Secant predictor.
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3. Parameterizations

The next step is to introduce a local measure along the branch. That is, the current
part of the curve is “parameterized.” Terms like “next” or “previous” solution are
quantified by introducing a parameterization. The most obvious parameter is the
control variable λ. While this parameter has the advantage of having physical signif-
icance, it encounters difficulties at turning points, where the tangent is normal to the
parameter axis.

Curves such as solution branches of Eq.(1) can be parameterized by curve pa-

rameters. A general curve parameter, call it γ, may have a geometrical rather than
a physical meaning. A parameterization by γ means that solutions of f(y, λ) = 0

depend at least locally on γ: y = y(γ), λ = λ(γ). For a particular value of γ, the
system f(y, λ) = 0 consists of n equations for the n + 1 unknowns (y, λ). If the
parameterization is established by one additional scalar equation, p(y, λ, γ) = 0, one
can formulate an extended system

F(Y, γ) :=

(

f(y, λ)
p(y, λ, γ)

)

= 0, (6)

which consists of n + 1 scalar equations for the n + 1 unknowns Y = (y, λ). The
general setting Eq.(6) includes all types of parameterization. For example, the option
of taking λ as continuation parameter means choosing γ = λ and for a prescribed
value of λj+1

p(y, λ) = λ − λj+1.

Other examples will follow soon. Solving Eq.(6) for specified values of γ yields infor-
mation on the dependence y(γ), λ(γ).

The parameterizing equation p(y, λ, γ) = 0 is attached to the given system of
Eq.(1). The resulting system (6) is a general equation on which general software
of numerical analysis is applicable. We call the chosen software SOLVER; in our
setting this may be Newton’s method. In this way, by calling SOLVER for Eq.(6),
the desired parameterization is imposed on Eq.(1) automatically. Alternatively, one
can apply the Newton method to Eq.(1) and impose an appropriate side condition on
the iteration. This latter approach will be described in Section 4. The formulation in
Eq.(6) has the advantage of not being tied to a special version of a Newton method.
Any modification or other iteration method for solving equations can be applied to
solve Eq.(6).

A classical example of a curve parameter is the arclength s—that is, γ = s. The
arclength s has a global meaning. It satisfies both the linear system

0 = fy
dy

ds
+ fλ

dλ

ds

(derived from Eq.(2)), and the nonlinear relation

(dy1/ds)2 + . . . + (dyn/ds)2 + (dλ/ds)2 = 1.
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Both these equations form an implicit system of n + 1 differential equations for the
n + 1 unknowns

dy1/ds, . . . , dyn/ds, dλ/ds.

A corresponding equation p(y, λ, s) = 0 is obtained by multiplying the arclength
equation by (ds)2. The resulting discretized parameterizing equation is

0 = p(y, λ, s) :=
n

∑

i=1

(yi − yi(sj))
2 + (λ − λ(sj))

2 − (s − sj)
2. (7)

If Yj = (yj , λj) = (y(sj), λ(sj)) is the solution previously calculated during continu-
ation, Eq.(7) together with Eq.(1) fix the solution (y(s), λ(s)) at discretized arclength
distance ∆s = s − sj. The scalar Eq.(7) is nonlinear. “Pseudo arclength” linearizes
Eq.(7) making use of y(s) − y(sj) ≈ (s − sj)dy(sj)/ds. The resulting expression is
linear in the increments ∆y, ∆λ, ∆s,

p(Y, s) := ztr(Y −Yj) − (s − sj) = 0 , (8)

and defines a plane normal to the tangent z in Yj.

Another important way to parameterize a branch is to admit any of the compo-
nents yi (i = 1, . . . , n) as a parameter, including yn+1 = λ. This local parameterization

leads to the parameterizing equation

p(y, η) := yk − η, (9)

with an index k, 1 ≤ k ≤ n + 1, and a suitable value of η. The index k and
the parameter η = yk are locally determined at each continuation step (yj , λj) in
order to keep the continuation flexible. An index k for local parameterization exists
whenever the full-rank condition Eq.(4) holds. Thus the turning around turning
points is straightforward. With Y = (y, λ), Eq.(6) is written as

F(Y, η, k) =

(

f(Y)
yk − η

)

= 0. (10)

It is easy to find a suitable index k and parameter value η. A continuation
algorithm based on tangent predictors determines k such that

|zk| = max{|z1|, . . . , |zn|, |zn+1|}.

This choice picks the component of the tangent z that is maximal. For a secant
predictor, index k is chosen such that ∆ryk is the maximum of all relative changes,

∆ryk = max{∆ry1, . . . , ∆ryn+1}, with ∆ryi :=
|yj

i − yj−1
i |

|yj
i |

.
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After an index k is fixed, a suitable parameter value η must be determined.
A value of η depends on the index k, on the location of the current solution on the
branch (i.e., on j), and on the desired step size σ,

η = η(k, j, σ).

A simple strategy relates the new step size η − yj
k to the previous step size yj

k − yj−1
k

by an adjustable factor ξ,
η = yj

k + (yj
k − yj−1

k )ξ. (11)

An example for the adjustable factor ξ will be given in Section 5.

The local parameterization concept can be generalized to a continuation that
involves qualitative aspects. For example, a continuation by asymmetry is furnished
by

p(y, λ, γ) = yk − ym − γ (γ 6= 0).

4. Correctors

In this section, we discuss how to solve Eq.(1) iteratively, starting from the predictor
Ȳ, such that the prescribed parameter γ is reached. The easiest method is to solve the
extended system Eqs. (6) or (10). Because these systems are ready to be solved by
the standard software SOLVER, this type of corrector needs not be discussed further.
As an alternative, a parameterization can be established by imposing a side condition
on the iteration method. To this end, consider one step of the Newton iteration,
formulated for the (n + 1)-dimensional vector Y = (y, λ),

fy∆y + fλ∆λ = −f(y(ν), λ(ν)),

y(ν+1) = y(ν) + ∆y, λ(ν+1) = λ(ν) + ∆λ.

In this system of n equations in n + 1 unknowns ∆y, ∆λ, the first-order partial
derivatives are evaluated at (y(ν), λ(ν)). The system can be completed by attaching
one further equation that parameterizes the course of the corrector iteration. For
example, one requests that the iteration be perpendicular to the tangent z. Using the
(n + 1) scalar product, this is written as

(∆ytr, ∆λ)z = 0

which completes the iteration algorithm. Starting from the predictor, (y(0), λ(0)) :=
(ȳj+1, λ̄j+1), this iteration defines a sequence of corrector iterations Y(ν)

(y(ν), λ(ν)), ν = 1, 2, . . . .

This sequence eventually hits the branch in the solution that is the intersection of the
curve defined by f(y, λ) = 0 and the hyperplane defined by the orthogonality to z. In
the parameterizing equation, the tangent vector z can be replaced by other vectors.

Conceptual differences among various parameterizations are not significant. In
a practical implementation, however, differences become substantial. Equations (6)
and (10) can be solved without requiring specific software. Alternatively, the block
structure can be exploited; available decompositions of fy can be used for the decom-
position of FY.
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5. Step controls

In simple problems the principles introduced above may work effectively without a
step-length control. That is, constant step lengths are taken throughout. If the
step size is small enough, such a step strategy may be successful for a wide range
of problems. But such results are often obtained in an inefficient manner, involving
too many steps along “flat” branches. The step length should be adapted to the
actual convergence behavior. Because step controls must meet the features of the
underlying combination predictor/parameterization/corrector, step-length algorithms
are specifically designed.

Step controls can be based on estimates of the convergence quality of the correc-
tor iteration. Such methods require a kind of absolute convergence measure to decide
what is “fast,” or “slow.” A basic criterion for scaling step-length algorithms can be
based on the observation that the total amount of work involved in a continuation de-
pends on the average step length in a somewhat convex manner: The continuation is
expensive both for very short steps (too many steps) and for very large steps (slow or
no convergence of correctors). The costs of a continuation are moderate for a certain
medium step length, which is related to an optimal number Nopt of iterations of a
corrector. This number depends on the type of corrector and on the prescribed error
tolerance ǫ. For example, with quasi-Newton correctors and ǫ = 10−4 the optimal
number is Nopt ≈ 6. The aim is to adjust the step size so that each continuation step
needs about Nopt corrector iterations. Let Nj denote the number of iterations needed
to approximate the previous continuation step. Then a simple strategy is to reduce
the step size in case Nj > Nopt and to increase the step size in case Nj < Nopt. This
can be done, for example, by updating the previous step size by multiplication with
the factor

ξ = Nopt/Nj ;

compare Eq.(11). In case of local parameterization, this leads to the value

η := yj
k + (yj

k − yj−1
k )Nopt/Nj

to be prescribed in Eq.(10) for the current parameter yk. This step control is easy
to implement. Further limitations of the step lengths may be advisable in order to
obtain enough information about the branch. A strategy that is easy to implement is
to limit relative changes ‖predictor‖/‖Y‖ to a value not larger than, say, 0.1. In this
way small details of branches most likely are resolved.

6. Historical and bibliographical remarks on continuation

We conclude the section by adding some notes about the development of the con-
tinuation subject. In the 1960s, early papers suggesting basic ideas were [Haselgrove,
1961], [Klopfenstein, 1961], [Deist & Sefor, 1967]. One special aspect of continuation
is homotopy, a strategy to facilitate the solution of a “difficult” problem g(y) = 0.
The homotopy procedure is a way to set up a chain of intermediate equations with
increasing difficulty such that the first equation is easy to solve, and the last equation
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is g(y) = 0. Introducing a “difficulty parameter” δ, and denoting the easy problem
ḡ(y) = 0, a systematic procedure to set up a homotopy is to solve

f(y, δ) := δg(y) + (1 − δ)ḡ(y) = 0,

starting from δ = 0, and ending at δ = 1. That is, homotopy is an application of
continuation. Several early papers were dedicated to the homotopy aspect.

In the 1970s, the interest shifted towards more algorithmic issues such as step
length control, and to the calculation of general branches. Basic methods have been
explained in this tutorial. Pseudo arclength was advocated by [Riks, 1972], [Keller,
1977], and local parameterization by [Rheinboldt, 1980], [Seydel, 1979b], [Seydel,
1984]. The updating of step lengths by orientation on an optimal number of steps
Nopt was suggested in [Seydel, 1977], [Seydel, 1984]. Such a strategy has become a
core of many step length algorithms. It has turned out that simple continuation prin-
ciples work well on most problems. For specific methods on continuation see [Menzel
& Schwetlick, 1978], [Den Heijer & Rheinboldt, 1981], [Rheinboldt & Burkardt, 1983],
[Deuflhard et al., 1987]; further references can be found in [Seydel, 1994]. Technical
issues of continuation are discussed in [Rheinboldt et al., 1990]. An account of sim-
plicial methods is included in [Allgower & Georg, 1990].
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