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1. The basic tasks

As seen in Tutorial 3, the calculated branch consists of a chain of discrete solutions.
It is most unlikely that the continuation happens to hit a bifurcation exactly. Rather
a bifurcation will be hidden in the space between the calculated solutions. Hence the
first task of a computational bifurcation analysis is to

(A) detect a bifurcation point.

The minimum requirement is to straddle the bifurcation—that is, to calculate one
solution on either “side.” This information can be easily condensed to a rough ap-
proximation to the bifurcation. For some applications it is necessary to

(B) calculate the bifurcation point accurately.

After having carried out steps (A) and (B), enough data may be available to

(C) determine the type of bifurcation.

Depending on the type of bifurcation, a new branch may bifurcate off distinct from
the branch that was calculated during the continuation. Then the completing step is
to

(D) switch branches.

Branch switching amounts to calculating one solution on each emanating branch.
This “first” solution provides information on the quality of the solutions on that new
branch, and on its direction. The four basic tasks of the computation of bifurcation
points are summarized in Fig. 1.
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Fig. 1. Branch switching.

A qualitative bifurcation analysis involves even more tasks. For example, the
linear stability of at least one solution on either side of a bifurcation needs to be tested.
To obtain a more global picture, the approximate domain of attraction of a stable
solution will be explored by selecting initial vectors in a larger neighborhood, and
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by integrating the initial-value problems until it becomes clear to which attractor the
trajectory is approaching. This kind of expensive exploration by simulation frequently
will be based on a trial-and-error-basis. The final aim is to explore the diameter of
the domain of attraction to get a feeling for the sensitivity of a stable solution. The
question is, how large a perturbation of a stable solution is allowed to be such that
the response to the perturbation decays to zero.

Naturally, the various kinds of bifurcation have required to develop various dif-
ferent solution strategies to the above-mentioned tasks. This tutorial cannot present
an exhaustive survey. Instead we explain ideas that have successfully been adapted
to various bifurcation scenarios. In the first part of this tutorial we concentrate on
the formally simplest equation,

f(y, λ) = 0, (1)

which may represent stationary solutions of a system of ordinary differential equations.
Later, we shall proceed to periodic solutions of ordinary differential equations.

2. Bifurcation test functions

Bifurcation test functions provide the framework for procedures designed to detect
bifurcations. Such a test function τ(y, λ) is evaluated along a branch during con-
tinuation. The basic feature of a test function for detecting a bifurcation (y0, λ0) is
τ(y0, λ0) = 0. That is to say, the bifurcation is a zero of the test function. More-
over, we require τ to be continuous in a neighborhood of (y0, λ0), and to change
sign. With such a test function at hand, the remaining exercise is to detect zeros of
τ during branch tracing. By interpolation based on the discrete values τj, τj+1, . . . an
approximation to a zero λ0 is calculated (see Fig. 2). This also solves the task (B),
when the continuation step length is sufficiently short. Methods of inverse interpola-
tion, or root finding algorithms can be used to approximate λ0. Related procedures
that exploit the continuation output to approximate bifurcations are called indirect

methods.

The simplest example of a test function is available for the stationary-state
Eq.(1). In case in (y0, λ0) two branches of stationary solutions meet, by the implicit
function theorem, the Jacobian matrix fy(y0, λ0) is singular. Hence

τ(y, λ) := det fy(y, λ) (2)

is a natural candidate for such bifurcations. This test function can be easily calculated
when the Jacobian was decomposed into a LU decomposition

Pfy = LU,

which results in
τ = det(P) det(U) = ±u11 · . . . · unn.

Here P is the permutation matrix that accounts for partial pivoting, L is lower tri-
angular with lii = 1, and uii, i = 1, . . . , n, are the diagonal entries of the upper
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Fig. 2. Application of a test function τ .

triangular matrix U. The test function of Eq.(2) is not scaling invariant, which may
lead to difficulties in deciding whether τ is “large”, or “small.” The test function of
Eq.(2) is not relevant for Hopf bifurcation.

There are other test functions. In case the eigenvalues µ1, . . . , µn of the Jacobian
matrices are calculated, with µk = αk + iβk and i denoting the imaginary unit, the
test function

τ := max{α1, . . . , αn} (3)

indicates stability. This test function detects those bifurcations that separate stable
from unstable solutions. Another test function will be defined below (in Eq.(7)).

Detecting turning points is much easier, and can be based on geometrical argu-
ments exploiting dλ

dy
= 0. Several strategies of obtaining approximations to turning

points are suggested in [Seydel, 1994].

3. Direct computation of bifurcations

The idea of a direct method for calculating a bifurcation of f(y, λ) = 0 is to set up
an equation F(y, λ) = 0 which selectively and exclusively has a bifurcation (y0, λ0)
as solution. Then the solution procedure (Newton’s method, for instance) applied
to F(y, λ) = 0 provides an iteration to calculate (y0, λ0). Basically, the equation
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consists of

F(Y) := F(y, λ) :=

(

f(y, λ)
τ(y, λ)

)

= 0 (4)

with τ being a bifurcation test function. The choice of the test functions (2) or (3) in
this context has not become popular because of the difficulty in obtaining the gradient
∇τ . But Eq.(4) fixes the idea, and illustrates that F typically is an enlargement of
f . An equation as Eq.(4) consisting of n + 1 scalar equations for (y0, λ0) is called a
minimal extended system for calculating a bifurcation point.

A basic approach related to test function (3) attaches the linearization, and
characterizes (y0, λ0) by a Jacobian fy having a zero eigenvalue with eigenvector h.
The resulting branching system from [Seydel, 1977, 1979c]

F(y, λ,h) :=





f(y, λ)
fy(y, λ)h
hk − 1



 = 0 (5)

has the dimension 2n + 1. For moderate values of n, a direct solution of (5) by
Newton-type methods is straightforward (“call SOLVER”). This system has served
as nucleus for several direct methods. Special implementations exploiting the block
structure have been suggested [Moore & Spence, 1980], [Doedel, 1997], which are
essential for large values of n.

The solution of the branching system of Eq.(5) includes y0, λ0, and the right
eigenvector h0. This vector h0 can be embedded into a continuous family of vectors h

defined also for solutions (y, λ) different from (y0, λ0). This generalized h = h(y, λ),
which satisfies

h0 = h(y0, λ0),

is defined by
[(I− ele

tr
l )fy(y, λ) + ele

tr
k ]h = el. (6)

The defect of fy(y, λ)h gives rise to a new test function,

τlk(y, λ) := etr
l fy(y, λ)h. (7)

The test function (7) for suitably chosen indices l, k (such that hk 6= 0, gl 6= 0 where
g is the left eigenvector of fy(y0, λ0)) qualifies to detect singularities of the Jacobian
[Seydel 1977, 1979a, 1979c, 1991, 1997a]. For this test function an efficient way of
evaluating ∇τ was found [Griewank & Reddien, 1984], which suggests to use τ from
Eq.(7) in connection with the minimal extended system (4).

The branching system (5) has a nonsingular Jacobian in case of turning points
(fλ 6∈ range(fy)). But the Jacobian is singular in case of bifurcation points with
fλ ∈ range(fy). This may badly affect the convergence of iterative methods. To
remove the singularity, the problem can be reformulated as a turning point problem.
The idea is to perturb the equation by something that is zero in the bifurcation
[Moore, 1980],

f̃(y, λ, λ̃) := f(y, λ) + λ̃r, (8)
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for a parameter λ̃ and a vector r that satisfies r /∈ range (fy(y0, λ0)|fλ(y0, λ0)). One

considers λ̃ a new branching parameter and sets ỹ := (y, λ). For the modified function
f̃

∂ f̃/∂λ̃ = r 6∈ range (∂ f̃/∂ỹ)

holds. Hence, the bifurcation point of f(y, λ) = 0 has become a turning point of
f̃(ỹ, λ̃) = 0 for λ̃ = 0. Because this modified equation has a rectangular Jacobian
with n rows and n + 1 columns, its singularity is characterized by the existence of a
left eigenvector g for the eigenvalue 0, rather than the right eigenvector h in Eq.(5).
The related eigenvalue equation 0 = gtr f̃ỹ leads to the system







f(y, λ) + λ̃r

(fy(y, λ))trg

gtrfλ(y, λ)
gtrr− 1






= 0 ; (9)

Moore chooses r = g.

For Hopf bifurcation points, the branching system analog to (5) for the complex-
conjugate eigenvector h = hRe + ihIm of the eigenvalue iβ attaches fyh = iβh. In
real form this amounts to











f(y, λ)
fy(y, λ)hRe + βhIm

fy(y, λ)hIm − βhRe

hRe
k − 1
hIm

k











= 0. (10)

For this extended system of dimension 3n+2 again SOLVER can be called (if n is not
too large), or special implementations can be applied that exploit the block structure
[Griewank & Reddien, 1983], [Roose, 1985].

4. ODE boundary-value problems

Analogous methods have been suggested for boundary-value problems. As a prototype
equation, consider the two-point boundary-value problem

y′ = f(t,y, λ), r(y(a),y(b)) = 0, (11)

for a ≤ t ≤ b. The vector function r defines n boundary conditions. Similarly as
in the finite-dimensional situation described above, various tasks of a computational
bifurcation analysis can be formulated via suitable enlarged boundary-value problems
of the general type

Y′ = F(t,Y), R(Y(a),Y(b)) = 0. (12)

As a simple example we take the local parameterization by yk(a). Then Eq.(12)
consists of n + 1 differential equations and n + 1 boundary conditions,

(

y

λ

)

′

=

(

f(t,y, λ)
0

)

,

(

r(y(a),y(b))
yk(a) − η

)

= 0. (13)
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The branching system for ODE boundary-value problems is





y

λ
h





′

=





f(t,y, λ)
0

fy(t,y, λ)h



 ,





r(y(a),y(b))
hk(a) − 1

Ah(a) + Bh(b)



 = 0. (14)

In this system of size 2n + 1 the n × n matrices A and B consist of the first-order
derivatives of r with respect to y(a) and y(b). For an embedding of the vector h, and
for the definition of a test function, see [Seydel, 1977, 1979a, 1994].

5. Branch switching

Branch switching is based on the predictor-corrector approach. It is essential to
calculate a good initial guess to an emanating solution. Then this initial guess serves
as predictor to trace the branch, see Tutorial 3.

One way of creating such a predictor is to accurately calculate the bifurca-
tion, and the tangents to all branches that meet in (y0, λ0), see [Keller, 1977]. For
pitchfork bifurcations, the vector h0 from Eq.(5) serves as tangent along the branch
perpendicular to the λ-axis. Then the predictor is given by

(y0 + δh0, λ0)

for some δ 6= 0. An accurate calculation of the bifurcation (y0, λ0) and of the vector
h0 is not required because approximations can be easily obtained by interpolation.
The right eigenvector h0 is approximated by interpolation based on the vectors h

defined by Eq.(6). In an analogous way, the predictor for a periodic orbit close to a
Hopf bifurcation can be obtained.

For the corrector, a good strategy is to set up selective equations that support
convergence towards the new branch rather than convergence back to the known
branch. This can be based on symmetry breaking.

6. Symmetry

Since bifurcation is frequently tied to symmetry, or to symmetry breaking, it is natural
to exploit symmetry also for computational purposes. Early papers applied symme-
try to branch switching [Seydel, 1983], and to the solution of the branching system
[Werner & Spence, 1984]. As suggested in the latter paper, the vectors y and h can
be reduced to certain symmetric or anti-symmetric subspaces, which allows to reduce
the size of the branching system from 2n + 1 to n + 1. In the former paper, special
equations were formulated that are selective. That is, ideally, an equation allows only
for a solution of a specific kind of asymmetry.

Because the situation is more complicated for boundary-value problems, we fix
ideas for Eq.(11). To classify and investigate symmetries in the solution, consider a
reflection ỹi(t) of yi(t). We define the component yi to be symmetric if

ỹi(t) = yi(t)
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holds for all t in the interval a ≤ t ≤ b. We shall say that a boundary-value problem
supports symmetry if it is solved by ỹ whenever it is solved by y. In particular, the
following kinds of symmetries occur frequently in bifurcation problems:

yi(t) = ỹi(t) for ỹi(t) := yi(a + b − t), (15a)

yi(t) = ỹi(t) for ỹi(t) := −yi(a + b − t), (15b)

yi(t) = ỹi(t) for ỹi(t) := −yi ( t + b−a
2

) , (15c)

yi(t) = ỹi(t) for ỹi(t) := yi ( t + b−a
2

) . (15d)

In Eq.(15a) the function yi is even, in Eq.(15b) it is odd. Eqs.(15c,d) are characteristic
for bifurcations of periodic solutions with period b − a. The latter type actually has
a period 1

2
(b − a), and is suitable for period doubling. A breaking of symmetry

of an emanating solution is easily discovered, and the asymmetric branch can be
parameterized by the size of asymmetry. The details are in [Seydel, 1983]. For
example, in the situation of Eq.(15a), the asymmetric branch can be parameterized
by its degree of asymmetry, γ, in a boundary condition

rn+1 := yk(b) − yk(a) − γ,

that is used in Eq.(13), replacing the (n + 1)st boundary condition.

Recently, symmetry-based algorithms have found some interest [Allgower et al.,
1992], [Allgower et al., 1993].

7. Periodic solutions

A class of differential equations with many applications are autonomous equations,

ẏ = f(y, λ). (16)

Periodic solutions y satisfy the boundary conditions

y(0) − y(T ) = 0 (17)

for some minimum period T > 0. To give t = 0 a meaning, a phase condition

φ(y(0), λ) = 0 is required. The equation φ(y(0), λ) = 0 defines a Poincaré surface for
each λ. The orbit should intersect this surface transversally. That is, f(y, λ)trφy 6= 0
should hold. There are several possibilities of phase conditions that can be prescribed
on y(0). An example is

φ(y(0), λ) := yk(0) − η = 0 (18a)

for some k and η in the range of yk(t). For transversality choose k such that |ẏk| is
maximal. Another phase condition is

φ(y(0), λ) := ẏk(0) = fk(y(0), λ) = 0, (18b)
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here at y(0) the tangent to the orbit is orthogonal to the yk-axis. A phase condition
with built-in transversality is

φ(y(0), λ) := f(z, λ)tr(y(0) − z) = 0. (18c)

In Eq.(18c), z is a point near the orbit, such as z = ŷ(0) where ŷ(t) is some approxi-
mation or a solution of a previous continuation step, see [Beyn, 1990]. A frequently
used phase condition is

∫ 1

0

ytrż dt = 0, (19)

where z(t) is a calculated (previous) periodic solution, see [Doedel et al, 1991].

With a phase condition, the problem of calculating periodic solutions can be
formulated as boundary-value problem. Defining ñ := n + 1 and

ỹ :=

(

y

T

)

, f̃(ỹ, λ) :=

(

T f(y, λ)
0

)

, r̃ :=

(

y(0) − y(1)
φ(y(0), λ)

)

, (20a)

the calculation of periodic orbits amounts to solve the two-point boundary-value prob-
lem

ỹ′ = f̃(ỹ, λ), r̃(ỹ(0), ỹ(1)) = 0. (20b)

Now the bifurcation methods for boundary-value problems can be applied to the
bifurcation of periodic orbits. For example, the boundary-value problem counterpart
to Eq.(10) for Hopf bifurcations is the branching system







y

T
λ
h







′

=







T f(y, λ)
0
0

T fy(y, λ)h






,







y(0) − y(1)
h(0) − h(1)

∑

i hi∂f1/∂yi

h1(0) − 1






= 0. (21)

In the Hopf situation, it is more efficient to apply Eq.(10), which does not involve
differential equations.

For period doubling, which is a bifurcation of period 2T solutions with symmetry
breaking, the approach of Section 6 can be applied using Eq.(15d), with b = 2T ,
a = 0. If z is the emanating solution, the corresponding parameter γ of asymmety
is γ = zk(a) − zk(a+b

2
) = zk(0) − zk(T ). The initial vector h(0) of the h that

corresponds to the 2T period can be identified with the eigenvector that corresponds
to the eigenvalue −1 of the monodromy matrix M. Consequently, h(T ) = −h(0),
and the interval of length 2T (or 2 in the normalization of Eq.(20)) can be reduced
to the “simple” length T (or 1). Thus the branching system specializes in the period
doubling case to







y

T
λ
h







′

=







T f(y, λ)
0
0

T fy(y, λ)h






,







y(0) − y(1)
φ(y(0), λ)
h(0) + h(1)
hk(0) − 1






= 0. (22)

For further references on the calculation of periodic orbits, see [Doedel et al., 1991],
[Doedel, 1997], [Holodniok & Kubicek, 1984], [Reithmeier, 1991], [Seydel, 1981], and
[Seydel, 1994].
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8. Bifurcation curves

The essential advantage of the basic branching system (5) and its variants (9), (10),
(14), (21), (22) compared to indirect methods is that such systems are most com-
fortably used to calculate bifurcation curves in two-parameter problems. Then,
with Y = (y, λ), N = n + 1 (or Y = (y, λ,h), N = 2n + 1 for Eq.(5)/(14), or
Y = (y, λ,hRe,hIm), N = 3n + 1 for Eq.(10)), and γ denoting the second param-
eter, a bifurcation with respect to λ is defined by an extended system of equations
F(Y, γ) = 0. This system of N equations is a continuation problem. That is, with
a branching system at hand, the problem of calculating a bifurcation curve is just
a standard continuation problem. This is most practical, and basic for the inverse

bifurcation problem, which is the question how to set a control parameter γ such that
a bifurcation in λ is shifted to a desired range. The bifurcation curves separate the
parameter domain into subdomains. Selecting one parameter combination (λ, γ) in
each subdomain, one has a problem representative for the entire class. All are con-

tact equivalent [Golubitsky & Schaeffer, 1985]. Solving the chosen problem, one can
cheaply study the properties of the entire class. Hence only few problems need be
solved in case the bifurcation curves are calculated, and costs are saved significantly.
Calculating bifurcation curves (or bifurcation surfaces) is a major effort in parameter
engineering. Branching systems have been used for this purpose since [Seydel, 1979a].

9. Other methods of computational bifurcation

The methods for the ODE boundary-value problem (11) allow to calculate Turing
bifurcation curves. Singularities of higher order can also be calculated by branching
systems. Such systems involve even more equations than the basic branching system
(5). For instance, the extended system for a hysteresis point involves 3n + 3 scalar
equations [Roose & Piessens, 1985],















f(y, λ, γ)
fy(y, λ, γ)h

hk − 1
gtrfy(y, δ, γ)

gl − 1
gtrfyy(y, λ, γ)hh















= 0. (23)

The branching system (5) is a subset of Eq.(23). The last component in Eq.(23) is
equivalent to (y0, λ0) being a point of inflection. The involved left eigenvector g is
defined by a subsystem, in analogy to Eq.(5). General procedures for calculating sin-
gularities were discussed in [Beyn, 1984], [Kunkel, 1988]. Another minimally extended
system for simple bifurcation points was suggested in [Pönisch, 1985]. Procedures
for the calculation of heteroclinic orbits were suggested in [Beyn, 1990], [Kuznetsov,
1990], [Friedman & Doedel, 1991]. For methods that determine the stability of pe-
riodic orbits refer to [Fairgrieve & Jepson, 1992], [Seydel, 1994]. For the stability
check of stationary solutions of large systems an efficient procedure was suggested in
[Neubert, 1993].
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10. Historical and further bibliographical remarks

Since numerical bifurcation has reached a level of some sophistication, it may be at-
tempted to give a weighting review of some of the past research. For a long time, the
numerical treatment of bifurcations was dominated by implementations of analytic
methods. That is, computers were used as machines that amplified the analytical
potential of researchers. Frequently, the applicability was restricted by the assump-
tion that a branch y(λ) be known. Since the validity of analytical methods is often
only local, such numerical approaches have not been convincing. Beginning in the
late 1970s, numerical methods were suggested that broke with traditional approaches
in that they were based on ideas not used previously for analytical treatment. A
prototypical example for the new approaches is the branching system (5), which was
pioneered in [Seydel, 1977, 1979a]. This approach makes use of the ability to solve
complex nonlinear systems of equations iteratively, which can not be done with ana-
lytical methods. Following these lines, also the computation of emanating solutions
can dispense with traditional analytical methods of calculating emanating solutions
only locally.

Many papers have been devoted to the finite-dimensional situation of Eq.(1)
which requires “only” linear algebra. An influencial paper was [Keller, 1977]. The
methods of [Seydel, 1977, 1979a] including the basic branching system were first
formulated for the more difficult infinite-dimensional case of boundary-value problems,
and later simplified to the finite-dimensional case of Eq.(1) [Seydel, 1979c]. The idea
of regularization due to [Moore, 1980] (see Eq.(8)), and the attempt to set up minimal
extended systems have further inspired the field. Many of the related papers have
been quoted above. Today, for most bifurcation points a defining system is available.
The notion of bifurcation test functions, which has found some recent interest, goes
back to [Seydel, 1977, 1979].

In the past years, several software packs devoted to nonlinear computation have
been developed. Here we do not attempt to present a review. A frequently used and
successful package is AUTO due to Doedel, for references see [Doedel et al., 1991].
Most figures of WOB were calculated by means of BIFPACK [Seydel, 1997].
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